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INTRODUCTION

The term “hair whorl” describes the circular distribution 
of  hairs on the scalp that revolves around an axis, which 

is determined by the follicle growing direction.[1] Hair whorl 
patterns are characterized by the orientation or spin, the 
overall whorl number within the scalp, and the anatomical 
localization [Figure 1]. Among the many hypotheses done 
on their origin, most speculated the association between the 
hair whorls and central nervous system abnormalities.[2-4] 
Familiar clusters have been reported in the literature, and a 
possible genetic linkage has been postulated.[5]

The majority of  the Caucasian population has a single apical 
scalp whorl, located in the parietal region underlying the 
vertex, either to the right of  midline (56%), to the left (30%), 
or midline (14%).[6] The clockwise orientation is detected 
in 84% of  the cases, while only 16% of  hair whorls rotate 
counterclockwise.[7] Hair whorls’ features are still evaluated 
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ABSTRACT

Background: The hair whorl denotes the spiral disposition of hairs around an axis, which is 
determined by the follicle growing direction. Atypical variants of scalp hair patterns, identified 
by abnormally placed or multiple whorls, have been associated with early brain developmental 
disorders and several dysmorphic syndromes. Materials and Methods: A 6-month 
case–control, prospective monocentric study included an overall number of 557 children. 
A logistic regression analysis was performed to evaluate the relationship between localization, 
the number of scalp hair whorls, and their association with neurofibromatosis type 1 (NF1). 
Results: NF1 positively correlates with a frontal localization, whereas a negative association 
was found with a parietal whorl pattern (P < 0.001). Conclusion: Evaluation of scalp whorls 
gains importance in the neonatal settings and may contribute to suspect the early diagnosis 
of NF1, as the related National Institutes of Health diagnostic criteria cannot be usually 
observed at an early age.
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using the Ziering Classification.[1] In 2003, Furdon and 
Clark analyzed scalp whorl features distinguishing between 
Afro-Americans and Caucasians.[8] This distinction was 
necessary because a single apical whorl is detected in 95.5% 
of  Caucasians, but only in 10% of  African Americans, who 
present a double apical hair whorl in 90% of  the cases.[9]

An anterior hair whorl, either clockwise or counterclockwise, 
is commonly found in trisomy 21 and Prader–Willi 
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syndrome, while its association with microcephaly, 

Rubinstein–Taybi syndrome, and X-linked mental 

retardation remains anecdotal, being reported only in a 

few cases [Figure 2].[6,10-13] The coexistence of  two or more 

hair whorls has been associated with mental retardation,[4] 

developmental and neurological disorders such as autism,[14] 

and epilepsy,[15] and it correlates with defects of  cranial 

bones, including dicephaly and trigonocephaly [Figure 3].[6] 

Moreover, multiple hair whorls have been associated with 

facial dysmorphisms and inflammatory dermatological 
diseases such as guttate psoriasis.[16,17]

On the other hand, the lack of  hair whorls had been related 

to microcephaly and encephalocele[10,16] even though it can 

occur in healthy individuals.[6]

In the clinical practice, hair whorls are often overlooked. 

Examining the hair whorl pattern, physicians should pay 

attention when a hair whorl pattern is not localized on 

the parietal region or when multiple whorls are present 

on the scalp. Based on the previous observations, atypical 

localization or an increased number in hair whorls does not 

necessarily imply any disease, since in healthy individuals, 

hair whorls with atypical localizations, spins, or numbers 

may be observed.[17]

The purpose of  this study is to assess any possible association 

between hair whorl patterns and neurofibromatosis 

type 1 (NF1) in pediatric patients who have attended the 

dermatology clinic of  Bologna University (Italy) during a 

period of  6 months.

MATERIALS AND METHODS

In a prospective monocentric observation study 

performed from September 2019 to the end of  January 

2020, we registered the number, spin, and location of  

hair whorls in children affected by NF1 (according to the 

diagnostic criteria as reported in the National Institutes 

of  Health consensus development conference)[18] versus 

control pediatric patients affected by acute transitory 

skin conditions, and referred to the Emergency Unit 

of  Pediatric Dermatology, at the Sant’Orsola-Malpighi 

University Hospital of  Bologna during the same period. 

None of  the controls had a genetic syndrome or inherited 

skin disease.

All patients were included after the parents had signed 

informed consent. In all patients, a detailed analysis of  the 

scalp was performed. The hair whorl pattern was obtained 

by a different combination of  three variable factors: whorl 

number, localization (parietal, frontal, and occipital area), 

and orientation (clockwise or counterclockwise).

An exclusion criterion was the impossibility to perform 

a correct assessment of  the scalp hair pattern. Diseases 

characterized either by cicatricial or reversible hair loss, 

the presence of  alopecia areata, or nonpathological 

Figure 1: Trichoscopy of a scalp hair whorl: The hairs emerging from the 
scalp form a clockwise S-shaped spiral due to their oblique orientation

Figure 2: Frontal clockwise hair whorl in a patient affected by 
neurofibromatosis type 1

Figure 3: Double clockwise parietal whorls in a control

[Downloaded free from http://www.ijtrichology.com on Wednesday, May 6, 2020, IP: 183.83.133.119]



Sechi, et al.: Hair whorls and neurofibromatosis type 1

58 International Journal of Trichology / Volume 12 / Issue 2 / March‑April 2020

conditions such as the use of  grooming techniques in 
patients with crinkled or very long hairs contraindicated 
patient recruitment.

The primary endpoint was to assess the frequency of  scalp 
hair patterns in affected patients versus controls in the 
studied population. The second endpoint was to examine 
the possible association between a target whorl pattern 
and NF1.

For any hair whorl pattern, a statistical correlation of  
their frequencies among affected versus nonaffected 
participants, expressed as dichotomous variables, was 
analyzed by a binomial logistic regression. Proportions 
were estimated with 95% exact confidence interval, and 
statistical significance was assessed at P < 5% (0.05). All 
analyses were performed using IBM® SPSS® Statistics for 
Windows Version 23.0 (IBM Corp., Armonk, NY, USA). 
All examinations were performed in accordance with the 
Helsinki principles of  medical ethics.

RESULTS

An overall number of  501 pediatric patients, all Caucasians, 
were included in the study and served as controls 
(median age: 11.22 years; standard deviation [SD]: 6.32, 
female/male ratio: 1.13). Controls’ hair whorl patterns are 
reported in Table 1.

The reported clinical conditions were, in order of  
decreasing frequency: infective skin disorders (234/501, 
46.7%), exogenous dermatitis (108/501, 21.6%), cutaneous 

Table 1: Scalp hair whorl patterns in neurofibromatosis type 1 and controls
Hair whorls 
per patient

Number of 
patients

Hair whorl number, localization, and spin Total whorl 
numberParietal Frontal Occipital

CW CCW Both CW CCW Both CW CCW Both

Controls

Zero 2 - - - - - - - - - 0

One 428 352 76 - - - - - - - 428

Two 62 76 (8) 25 (2) - (30) 5 - 12 6 - (1) 124

Three 9 13 (3) 6 - (3) 1 - - 4 3 - (2) 27

Total 501 441 (11) 107 (2) - (33) 6 0 0 16 9 - (3) 579

NF1 patients

Zero - - - - - - - - - -

One 47 38 - - 9 - - - - - 47

Two 8 9 (1) 2 - (1) 2 1 - 2 - - 16

Three 1 1 1 - (1) 1 - - - - - 3

Total 56 48 (1) 3 (2) 12 1 - - 2 - 66

Both cases and controls showed a single hair whorl (83.9% and 85.4%, respectively). Two scalp whorls were detected in 14.3% of the cases and in 12.4% of the controls, while a triple scalp whorl was very 

infrequent. The prevalence of frontal whorls was 1% and 19.7% in controls and NF1 patients, respectively. The mismatch between the number of patients and the total number of scalp whorls is due to the 

count of every single element in cases of multiple whorls. Double parentheses denote the features of whorl duplets that are co-localized on the scalp area of the same patient. None of the triplets are co-

localized within the same scalp area in patients presenting with 3 hair whorls. NF1 – Neurofibromatosis type 1; CW – Clockwise; CCW – Counterclockwise

burns (47/501, 9.4%), paraviral or postinfectious 
skin eruptions (43/501, 8.6%), urticaria and/or 
angioedema (38/501, 7.6%), exanthematous diseases 
(25/501, 5%), and adverse drug reactions (6/501, 1.2%).

Patients affected by NF1 were 56 (median age: 13.9; SD: 
5.4, female/male ratio: 1.56). Positive family history for 
NF1 was reported in 37/56 cases. Hair whorl patterns in 
patients affected by NF1 are shown in Table 1.

The great majority of  the controls showed a single 
hair whorl localized in the vertex area, with the hair 
oriented in a clockwise direction (352/501: 70.3%), 
while only 15.7% (76/501) of  the patients had a single 
counterclockwise vertex whorl. Two scalp whorls were 
detected in 12.4% of  the cases, with the parietal areas 
again been the most common localization. 66.1% of  
whorl duplets were co-localized within the same areas. 
The duplet spins were oriented both clockwise in 8 whorl 
pairs (19%), both counterclockwise in 2 cases (4.8%), or 
combined in a counterclockwise/clockwise pattern in the 
remaining 71.4% of  the cases. A triple scalp whorl was very 
infrequent, being detected only in 9 patients. In none of  
these cases, the triplets were co-localized within the same 
areas and combined very heterogeneously.

The statistical analysis [Table 2] showed a positive 
correlation between the frontal hair whorl localization and 
NF1 was found (P < 0.001), whereas an inverse association 
between parietal location and NF1 was detected (P < 0001).
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DISCUSSION

The study of  hair patterning has a long history. The reasons 
for clinicians’ interest in hair whorls vary considerably. First 
and foremost, the scalp hair pattern remains unchanged 
from birth until death and is an easy and identifiable sign.

Multiple nonmutual exclusive theories concerning 
the determinants of  the hair directional pattern have 
been postulated. The oldest yet still the most validated 
remains the mechanical theory, which states that the 
domelike growth of  the underlying brain affects the 
hair directional slope.[11] The key factor is played by 
the plane of  stretch exerted on the skin by underlying 
growing tissue during the hair follicle development in fetal 
life.[6] Therefore, all disorders of  early brain development 
(including encephalocele, cervical neural groove, dicephaly, 
and microcephaly) occurring within the first 18 weeks 
of  fetal life are critical for the establishment of  the hair 
follicle formation within the scalp and result in an aberrant 
scalp hair patterning.[18] Hair follicles precursors, derived 
from the neuroectoderm, penetrate into the underlying 
mesenchyme with a sloping angle due to the relative 
increase of  growing tension on the epidermis compared to 
the underlying layers. The angle of  inclination formed by 
the emerging hair follicle with the skin is highly conserved 
in groups of  nearby hair follicles, thus creating a hair 
tract. A hair stream is determined when two or more hair 
tracts take a different direction: as a consequence, from 
a tight apical whorl, the parietal hair stream progresses 
centrifugally to cover the whole scalp.[6,10]

A recent advance in the understanding the formation of  
scalp whorls has been made by Paul, who were able to 
generate high dermoepidermal shearing forces on pigskin 
using tissue expanders. As a consequence, the resulting 
rapid tissue expansion induces the formation of  spirals 
along the advancing line of  cellular proliferation, which 
progressively deformed into curves, to finally generate the 
whorl pattern.[19]

A genetic factor conditioning scalp whorl patterning has 
been put forward in order to explain hair whorl formation 
in scalp areas lacking mechanical tension forces during 
embryogenesis.[17] This theory has been validated by 
investigations based on the study of  left-handedness, 
counterclockwise scalp whorls, and atypical right 
hemisphere location of  the language center.[20]

Moreover, a metabolic etiology has been proposed. This 
theory supports the observation that hair follicles tend to 
be evenly spaced, suggesting that the activity of  promoting 
and inhibiting growth factors conditions the distribution 
of  the follicular units within the scalp. The hair whorl 
becomes the center of  a decreased metabolic activity, due 
to the reduced release of  morphogens.[21]

Recent studies on mammals with hair whorls in the 
coat showed that the variation may arise from sequence 
variation in the genes involved in tissue polarity signaling, 
including Frizzled 6, a member of  a large family of  integral 
membrane Wnt receptors.[22] The same system that patterns 
hair may also play a role in regulating the development of  
genetic brain anomalies.[22]

Moore et al. studied the growth of  the first hair coat in male 
mice administered with epidermal growth factor (EGF). 
The authors demonstrated that EGF plays a part in hair 
follicle development, and administering EGF in male 
mice caused hair whorl formation, resulting from the 
focal development of  curved monotrichs, characterized 
by reduced diameter and length.[23] This finding becomes 
fascinating if  tied to the ongoing debate concerning the 
EGF-receptor (EGF-R) role in Schwann cell tumor genesis, 
which is characteristic of  NF1.[24] An EGF-overexpressing 
genotype was associated with the early onset of  NF1 
clinical features.[25] In addition, the EGF immunoreactivity 
was detected in week 15–16 fetuses at the level of  surface 
epithelia.[26] On the skin, the highest staining intensity was 
localized at the follicular ostia. The outer root sheath, and 
the Henle layer of  inner root sheath above the papilla, 
showed both a positive immunoreaction.[26] It is not clear 
how the EGF signaling pattern may condition the genesis 
of  an abnormal whorl pattern; on the other hand, it is 
certain that this process is accomplished early, during the 
embryonic life.

By combining the different hypotheses upon the hair whorl 
formation, it is possible that the overexpression of  EGF-R, 
already proved in NF1 murine tumor models,[27] changes 
according to the different scalp areas. The EGF-driven 
metabolic response could trigger growth signals within the 
follicular units, altering their distribution and orientation 

Table 2: Linear and logistic regression
Factor Coefficient CI P

Absent whorls −19.016 0 0.999 

Single whorls −0.116 0.14-1.895 0.764

Double whorls 0.166 0.533-2.611 0.683

Triple whorls −0.006 0.124-7.993 0.995

Frontal area 3.114 8.054-62.857 <0.001*

Parietal area −3.459 0.008-0.120 <0.001*

Occipital area −0.215 0.185-3.523 0.775

Significant features are set in bold. *Significant (P<0.05). CI – Confidence interval
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in the scalp. However, the involvement of  a mechanical 
component in the pathogenesis cannot be excluded.

The results of  this study show that atypical frontal scalp 
hair whorls can be a premonitory sign of  NF1, even though 
they can also be rarely detected in normal controls.

No significant association was found between double scalp 
whorls and NF1. The data in our series show a prevalence 
of  double scalp whorls, the majority co-located in the 
parietal area, with 12.37% in controls and 14.28% in NF1 
affected patients. The prevalence found in the control 
group is quite surprising since it is double that reported in 
the literature, which stands at 4.5%.[11]

The collected results showed a 1% (6/579) and 19.7% 
(12/66) prevalence of  frontal hair whorls in controls and 
NF1 patients, respectively.

A previous study on 510 pediatric patients referred for 
dermatological consultations reported an overall prevalence 
of  frontal whorls in 7.8%, which peaked at 17.14% in the 
subcohort affected by inherited skin disorders, without 
providing the accounted diseases.[7]

Smith and Gong characterized scalp whorl features in 200 
Caucasian children, describing a 10% moderate out flare 
of  the medial eyebrow patterning, and the anterior scalp 
hair upsweep in 7% of  the patients, which does not imply 
the formation of  a frontal hair whorl.[11] Anterior frontal 
whorls were reported to be associated with the cowlick 
pattern in 7% of  the cases, which are located along the 
frontal hairline.[6]

CONCLUSION

In the literature, there is little evidence regarding aberrant 
scalp hair directional patterning in patients affected by 
NF1. Frontal hair whorl localization has been associated 
with NF1, but a focused case–control study is still lacking.
[7,28-30] Evaluation of  scalp whorls gains importance in 
the neonatal setting, as the National Institutes of  Health 
diagnostic criteria for NF1 cannot usually be observed at 
an early age but develop later in life.[18]
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Chapter 1

Basic Surface Algebraic Topology

This lecture is about surface algebraic topology. The key idea is to build a bridge
between topology, which is abstract and hard to imagine, and algebraic structure, which
is tangible and can be computed. In a categorical sense, we construct a functor

C1 ! C2

between two categories1 with structural information preserved, namely

C1 = {Topological Spaces, Homeomorphisms}
C2 = {Groups, Homomorphisms}

Definition 1 (Topological Type). All oriented compact surfaces can be classified by
their genus g and number of boundaries b. Therefore, we use

(g, b)

to represent the topological type of an oriented surface S.

Definition 2 (Homeomorphism). A homeomorphism is a continuous function between
topological spaces of the same topological type.

Definition 3 (Homomorphism). A homomorphism is a structure-preserving map be-
tween two algebraic structures of the same type.

We now introduce first homotopy group, denoted2 as ⇡1(S, q). The group structure
of ⇡1(S, q) determines the topology of S.

1.1 Fundamental Group

Let S be a two-manifold with a base point p 2 S.

Definition 4 (Curve). A curve is a continuous mapping � : [0, 1]! S
1
The concepts of category and functor were covered in previous lectures

2
Although the fundamental group in general depends on the choice of base point, it turns out that,

up to isomorphism (actually, even up to inner isomorphism), this choice makes no di↵erence as long as

the space S is path-connected. For path-connected spaces, therefore, many authors therefore write ⇡1(S)
instead of ⇡1(S, q)

1



Definition 5 (Loop). A closed curve or loop through p is a curve s.t. �(0) = �(1) = p

Definition 6 (Homotopy). Let �0, �1 : [0, 1]! S be two curves. A homotopy connecting
�0 and �1 is a continuous mapping

f : [0, 1]⇥ [0, 1]! S

s.t.

f(0, t) = �0(t)

f(1, t) = �1(t)

We say �0 is homotopic to �1, if there exists a homotopy between them, denoted as
�0 ⇠ �1.

Definition 7 (Loop Product). �1 · �2 is

�1 · �2(t) :=

(
�1(2t) for 0  t  0.5

�2(2t� 1) for 0.5  t  1

Definition 8 (Loop Inverse). �
�1(t) := �(1� t)

Definition 9 (Fundamental Group). Given a surface topological space S, fix a base
point p 2 S. Homotopy relation is an equivalence relation3. The set of all the loops
through the base point p is � , which can be classified by homotopy relation and form a
set of all the homotopy classes, denoted as �/ ⇠. To define a group:

• The homotopy class of a loop �, denoted by [�], becomes group generator.

• The group binary operation is defined as

[�1][�2] := [�1 · �2]

.

• The group unit element is defined as [e], which is as trivial as a point.

• The group inverse element is defined as

[�]�1 = [��1]

then �/ ⇠ forms a group, so-called fundamental group of S, or the first homotopy group,
denoted as ⇡1(S, p).

Definition 10 (Word Group Representation). Let G = {g1, g2, ..., gn} be n distinct sym-
bols. Words of finite length generated by those symbols form a group with equivalence
relations

• {g1, g2, ..., gn} becomes group generator.

• The group binary operation is defined as the concatenation of two words.

3
needs to be reflexive, symmetric and transitive
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• The group unit element is empty word ;

• The group inverse element is defined as.

(g1g2...gk)
�1 = g

�1
k

...g
�1
2 g

�1
1

• Certain segments of words can be replaced by ;, which form equivalence relations,
denoted by set R = {R1, R2, ..., Rm}.

Given a set of generators G and a set of relations R, all the equivalence classes of the
words generated by G form a group under the concatenation, called word group, denoted
as

hg1, g2, ..., gn|R1, R2, ..., Rmi

Word group representation can be used to process fundamental group in computer.

Theorem 11 (Canonical Representation of Surface Fundamental Group). Suppose S
is a compact, oriented surface, p 2 S is a fixed point, the fundamental group has a

canonical
4
representation

⇡1(S, p) = ha1, b1, a2, b2, ..., ag, bg|
gY

i=1

[ai, bi]i

where

[ai, bi] := aibia
�1
i

b
�1
i

and g is the genus of the surface S and ai, bi are canonical bases
5

Theorem 12. Topological Spaces Homeomorphism , Fundamental Groups Isomor-

phism

Canonical Representation of ⇡1(S , p)

q

b1

b2

a2

a1

a1

b1

a
�1
1

b
�1
1

a2

b2

a
�1
2

b
�1
2

Figure: Canonical fundamental group representation.

David Gu (Stony Brook University) Computational Conformal Geometry July 12, 2020 23 / 59

Figure 1.1: fundamental group canonical basis and fundamental domain

Proof. For each surface, find a canonical basis, slice the surface along the basis to get a
4g polygonal scheme, then construct a homeomorphism between the polygonal schema
with consistent boundary condition. (e.g. bi-torus see figure 1.1)

4
The canonical representation of the fundamental group of the surface is not unique. It is NP hard

to verify if two given representations are isomorphic.
5
we omit the definition of canonical basis.
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Definition 13 (Connected Sum). The connected sum S1�S2 is formed by deleting the
interior of disks Di and attaching the resulting punctured surfaces Si�Di to each other
by a homeomorphism h : @D1 ! @D2

S1 � S2 := (S1 �D1) [h (S2 �D2)

Canonical Representation of ⇡1(S , p)

a

bp

a

bp

q

b1

a2

a1

D1 D2

f : �D1 ! �D2

Definition (Connected Sum)

Let S1 and S2 be two surfaces, D1 ⇢ S1 and D2 ⇢ S2 are two topological
disks. f : @D1 ! @D2 is a homeomorphism between the boundaries of the
disks. The connected sum is S1 � S2 := S1 [ S2/{p ⇠ f (p).

David Gu (Stony Brook University) Computational Conformal Geometry July 12, 2020 29 / 59

Figure 1.2: connected sum of two tori

Theorem 14 (Classification Theorem of Closed Surfaces). Any closed connected surface

is homeomorphic to exactly one of the following surfaces:

• the sphere, a finite connected sum of tori,

• the connected sum of g tori for g � 1

T2 �T2 � ...�T2
| {z }

g tori

• the connected sum of k real projective planes for k � 1.

RP2 �RP2 � ...�RP2

One can use Van Kampen theorem (will be discussed in later course) to show that
theorem 11 is true for

S = �g

i=1T
2

1.2 Quotient Group

Definition 15 (Coset). Let H be a subgroup of the group G. Given an element g of G,

4



• the left cosets of H in G are the sets (not group!) obtained by multiplying each
element of H by a fixed element g of G (where g is the left factor), denoted by

gH := {gh : h 2 H}

• The right cosets are defined similarly, except that the element g is now a right
factor, that is,

Hg := {hg : h 2 H}

Definition 16 (Normal Subgroup). Subgroup N of group G is normal subgroup, denoted
as N / G if for all g in G, the left cosets gN and right cosets Ng are equal. Notice that
any subgroup of an Abelian group is a normal subgroup.

Definition 17 (Quotient Group). Let N / G. To construct a quotient group G/N or
G

N
, N needs to be a normal subgroup of G:

• define the set G/N to be the set of all cosets6 of N in G. That is, G/N = {N
a

:

a 2 G};

• for any two cosets N
a

and N
b

, binary operation ⇤ is defined as

N
a
⇤N

b

= N
ab

• the denominator N , the whole normal subgroup, collapsed into the unit7 element

N = {e}

• the inverse is defined as
N
a

�1 = N
a�1

Notice that G/e = G and G/G = {e}

The concepts of quotient group will be frequently used in following chapters.

1.3 Covering Space

Definition 18 (Covering Space). Given topological spaces S̃ and S, a continuous map
f : S̃! S is surjective, such that

• for each point q 2 S, there is a neighborhood U of q;

• its preimage f
�1(U) = [iŨi is a disjoint union of open sets Ũi;

• f on each Ũi is a local homeomorphism

6
since N /G, left and right cosets coincide, we use N

a
to denote coset of N given a 2 G

7
In a quotient of a group, the equivalence class of the identity element is always a normal subgroup

of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup.

We can alternatively think of quotient group as G/ ⇠, where a ⇠ b if a and b are in the same coset of N

5



then (S̃, f) is a covering space of base space S, and f is called a projection map.

Definition 19 (Deck Transformation and Covering Group). The automorphisms of S̃,
g : S̃ ! S̃, are called deck transformations, if they satisfy f � g = f . All the deck
transformations form a group, the covering group, and denoted as

Deck(S̃)

Theorem 20 (Covering Group Structure). Covering space S̃ and base space S.
Suppose base points q̃ 2 S̃, f(q̃) = q 2 S.
The projection map f : S̃ ! S induces a homomorphism between their fundamental

groups

f⇤ : ⇡1(S̃, q̃)! ⇡1(S, q)

If f⇤(⇡1(S̃, q̃)) is a normal subgroup of ⇡1(S, q) then the quotient group

⇡1(S, q)

f⇤(⇡1(S̃, q̃))
⇠= Deck(S̃)

Definition 21 (Universal Covering Space). If a covering space S̃ is simply connected
(i.e. ⇡1(S̃) = {e}), then S̃ is called a universal covering space of S.

⇡1(S) ⇠= Deck(S̃)

Namely, the fundamental group of the base space is isomorphic to the deck transforma-
tion group of the universal covering space (see figure 1.3)

Figure 1.3: base space S on the left and universal covering space S̃ on the right

1.4 First Homotopy Group vs. First Homology Group

Homotopy relation does fully capture the topological spaces, but it is hard to compute:
the homotopy group is non-Abelian (see figure 1.4). If we can instead represent the
topological space by an Abelian group, which can be computed using linear algebra, it
would be highly encouraged, even if some loss of information.
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By a looser definition of equivalence relation, called homology relation, an Abelian
group was formed. The loop product became commutative and therefore was replaced
by notation +, called loop formal sum, or just formal sum when generalized to any
dimension.

a1

b1

q

�

Figure 1.4: In first homotopy group ⇡1(S, q), we have [�] = [a1b1a
�1
1 b

�1
1 ], but [�] 6= [e],

so [a1][b1] 6= [b1][a1], but in first homology group H1(S,Z), [a1] + [b1] = [b1] + [a1], and
also we have [�] = 0, see example 30

.

Recall definition of loop product, which emphasizes the order of concatenation, and
therefore it is not commutative. Why don’t we just formally sum each parts up, and
keep their orientation in record?

Definition 22 (Formal Sum). If an oriented manifold M can be decomposed into finite
simpler submanifolds m1,m2, ...,mn with the same orientation, then we write:

M = m1 + m2 + ... + mn

where + denotes formal sum. Formal sum is commutative.

Definition 23 (Inverse of Formal Sum). The inverse of formal sum of an oriented
manifold M is the sum of inverse of submanifolds m1,m2, ...,mn, denoted by “�”:

�M = �m1 �m2 � ...�mn

Definition 24 (Closure). The closure of a subset S of points in a topological space
consists of all points in S together with all limit points of S, denoted by

S̄

Definition 25 (Interior). The interior of a subset S of a topological space X is the
union of all subsets of S that are open in X, denoted by

S�

Definition 26 (Boundary and Boundary Operator). The boundary of a subset S of a
topological space X is the closure of S minus the interior of S:

@S := S̄ \ S�

We also use @k⌃ to indicate that the boundary operator actions on a k-manifold ⌃.
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Example 27 (Boundary of Surface or Loop). For oriented surface, the boundary (loop)
is positively oriented “as one walks along boundary on outside surface while cli↵ on
your right”. For oriented curve, the boundary are two end-points that the target point
is positively oriented and the source point is negatively oriented. We use 0 to denote
“nothing in space”, e.g. the boundary of a sphere or a loop.

Up to this point, to form a group of k-manifolds, we already have:

• commutative binary operation, the formal sum “+”

• identity unit element, 0, “nothing in space”

• inverse of an element, which is its negatively oriented version.

We need one more thing, the equivalence class, to reveal topological invariant.

Definition 28 (Homology). Let S be a k-manifold. Let �0 and �1 be two (k � 1)-
manifolds. A homology relation connecting �0 and �1 is a k-submanifold ⌃ such that:

@k⌃ = �0 � �1

We say �0 is homological to �1 if there exists homology between them, denoted as �0 ⇠ �1
8.

Definition 29 (First Homology Group). Given a surface topological space S. Homology
relation is an equivalence relation. The set of all the loops and finite formal sum of them
is � , which can be classified by homology relation and form a set of all the homology
classes, denoted as �/ ⇠. To define a group:

• The homology class of a loop �, denoted by [�], becomes group generator.

• The group binary operation is defined as

[�1] + [�2] := [�1 + �2]

which is commutative

• The group unit element is defined as 0, which is “nothing in space”.

• The group inverse element is defined as

[�]�1 = �[�] := [��]

then �/ ⇠ forms a group, so-called the first homology group, denoted as H1(S,Z), if
formal sum is over Z, see foot note if over otherwise field9

Example 30 (Homology of loops). See figure 1.5, S is a closed orientable surface with
genus g = 3. We have formal sum:

8
Notice that Homotopy

:) Homology. To illustrate homology relation is an equivalence relation:

• (reflexive) � ⇠ � since 0 = � � � trivially holds

• (symmetric) if �0 ⇠ �1, then @2⌃ = �0 � �1, then @2(S \⌃) = �1 � �0, then �1 ⇠ �0

• (transitive) if �0 ⇠ �1 and �1 ⇠ �2, suppose @2⌃1 = �0 � �1 and @2⌃2 = �1 � �2, then @2⌃1 +

@2⌃2 = @2(⌃1 +⌃2) = �0 � �2 then �0 ⇠ �2.

9
if formal sum over Z2, for example, then [�]+[�] = 0, we denoted first homology group as H1(S,Z2).

If formal sum over R, for example, we allow 0.4[�] � 1.6[�] +
p
2[�] = (

p
2 � 1.2)[�], then denote first

homology group as H1(S,R)
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Homological Classes

�1

�2

S

�1

�2

�1

�3

�1

�2

�3 �3

�3

�2

@�1 = �1 � �2, @�2 = �3 � �1 + �2, @�3 = ��3.

�1 and �2 are not homotopic but homological; �3 is not homotopic to e,
but homological to 0; �3 is homological to �1 � �2.

David Gu (Stony Brook University) Computational Conformal Geometry July 11, 2020 22 / 44

Figure 1.5: an example of homology relation

S = ⌃1 + ⌃2 + ⌃3

What can we say about the homological class about �1, �2 and �3? We can see that

�1 ⇠ �2 ⇠ (�2 + �3) ⇠ (�1 � �3)

�3 ⇠ (�1 � �2) ⇠ 0

since

@2⌃1 = �1 � �2

@2⌃2 = (�2 + �3)� �1 = �3 � (�1 � �2) = �2 � (�1 � �3)

@2⌃3 = 0� �3

1.5 Homology Group

Kernel is the generalization of zeros of a function. Image is the generalization of range
of a function.

Definition 31 (Kernel). Let G and H be groups and let f : G! H be a homomorphism.
Let eH denote the identity unit element in H. The kernel of f is defined as

ker f = {g 2 G | f(g) = eH}

Definition 32 (Loop Group). Any closed loop (or finite formal sum of loops) � on a
closed oriented surface S will satisfy:

@1� = 0

We denote loop group Z1(S) as

Z1(S) = ker @1 = {� 2 S | @1(�) = 0}

9



Definition 33 (Image). Let G and H be groups and let f : G! H be a homomorphism.
The image of f is defined as

img f = {h 2 H | 9g 2 G s.t. f(g) = h}

Definition 34 (Boundary Group). Any submanifold ⌃ on a closed oriented surface S
will induce a closed boundary �:

@2⌃ = �

We denote boundary group B1(S) as

B1(S) = img @2 = {� 2 S | 9⌃ 2 S s.t. @2⌃ = �}

Definition 35 (Homology Group Structure). The first homology group of S is the
quotient group

H1(S,Z) =
Z1(S)

B1(S)
=

ker @1

img @2

Which is consistent with homology relation, as we collapse B1(S) as identity (all @2⌃
now become 0)

Generally, given (k + 1)-manifold M, k homology group is

Hk(M,Z) =
Zk(M)

Bk(M)
=

ker @k

img @k+1

Figure 1.6 illustrates the relationship between groups:

• Ck, which is group of all k-submanifold

• Zk, which is group of kernel of @k on k-submanifold

• Bk, which is group of image of @k+1 on (k + 1)-submanifold

Bk(M) ⇢ Zk(M) ⇢ Ck(M)

and

@k � @k+1 = 0

Theorem 36. Suppose S is a path-connected genus g closed surface, then

H0(S,Z) ⇠= Z ⇠= H2(S,Z)

H1(S,Z) ⇠= Z2g

10
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Figure 1.6: The relation of groups Ck, Zk and Bk, and their duality, C
k, Z

k and B
k

1.6 First Homology Group vs. First Cohomology Group

We have another Abelian group that can encode the same topological information of
homology group but can be computed even faster. However, few people understand. We
would like to point out k-form is the generalization of function, and coboundary operator

is the generalization of gradient. Before we get there, we now introduce some concept
in di↵erential geometry, which would be frequently used.

Definition 37 (Tangent Space). Given a point x on closed surface M, a tangent space

of M through x, denoted as
TxM

is a vector space of plane that contains the possible directions in which one can tan-
gentially pass through x. The elements of the tangent space TxM at x are called the
tangent vectors v at x, see figure 1.7:

Definition 38 (Tangent Bundle). The tangent bundle of a di↵erentiable manifold M
is a manifold TM which assembles all the tangent vectors in M, given by the disjoint
union of the tangent spaces of M:

TM :=
[

x2M
{x}⇥ TxM =

[

x2M
{(x, v) | v 2 TxM} = {(x, v) | x 2M, v 2 TxM}
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Figure 1.7: The tangent space TxM and a tangent vector v on TxM, along a curve �(t)
traveling through x 2M

Figure 1.8: Vector field f : D! R2 (left) and g : S! TS (right)

Definition 39 (Vector Field).

A vector field on the region D ⇢ R2 is a vector-valued function

f : D! R2

A vector field on a surface S is an assignment of a tangent vector to each point in S.
More precisely, a mapping from S to tangent bundle of S:

g : S! TS

See figure 1.8

Definition 40 (Line Integral). Integration of vector field F along a curve is called line

integral. Z

�

F (v) · dv

or simply denoted as
hF, �i

Definition 41 (Curl Free Vector Field). A curl free field F of is a vector field such that
the line integral along any loop � equals zero:

I

�

F (v) · dv = 0

12



or written as
curl F = 0

Definition 42 (Gradient Vector Field). A gradient field (or conservative field) F is a
vector field such that the line integral along any boundary � equals zero:

I

�

F (v) · dv = 0

or equivalently we say that there exist a scalar field ' that its gradient is F :

F = r' or F = grad '

Notice that just like boundary
:) loop

gradient field
:) curl free field

Definition 43 (1-form). Given an oriented closed surface S, a 1-form f of S encoded
by a vector field F on S is a linear mapping from any curve � 2 C1(S) to line integral
hF, �i 2 R:

f : C1(S)! R

we write:
f(�) = hf, �i := hF, �i

Since the 1-form of S is very much of the vector filed F , so people use vector field

and 1-form interchangeably. Recall that group of any curve C1(S), group of loops Z1(S)
and group of boundaries B1(S) with

B1(S) ⇢ Z1(S) ⇢ C1(S)

since
boundary

:) loop

Now we consider another way to describe such topological information.

Definition 44 (First Cohomology Group). Given a surface topological space S. We
define three groups of 1-form (vector field) with binary operation “+” over Z, unit
element 0 and inverse as “-” prefix:

• group of all vector field over S, denoted as

C
1(S)

• curl free field group, denoted as Z
1(S)

Z
1(S) = {f 2 C

1(S) | hf, �i = 0, � 2 Z1(S)}

• gradient field group, denoted as B
1(S)

B
1(S) = {f 2 C

1(S) | hf, �i = 0, � 2 B1(S)}

13



Since
boundary

:) loop

We have
B

1(S) ⇢ Z
1(S) ⇢ C

1(S)

The first cohomology group H
1(S,Z) is achieved by collapsing B

1(S) into identity:

H
1(S,Z) =

Z
1(S)

B1(S)

and notice that

H
1(S,Z) ⇠= H1(S,Z)

Until now, we may not have proper language to describe what is a cohomology
relation, although we derive cohomology group. What does it mean if f0 is cohomologous
to f1?

A scalar field ' on S is a 0-form. By gradient operator, it becomes a vector field F ,
the 1-form. Imagine any of tiny oriented curve � on S. The gradient can be thought of
the di↵erence of the scalar values of two end points, which is the summation of 0-form of
boundary of the curve (because boundary will give one positive and one negative value):

F|{z}
1-form

= grad
0-formz}|{

'| {z }
1-form

= ' � @| {z }
1-form

Now the generalization of gradient by relating boundary operator is coboundary
operator

Definition 45 (Coboundary and Coboundary Operator). k-dimensional Coboundary

operator d
k actions on a k-form f :

d
k
f(·) := f � @k+1(·)

we say d
k
f , a (k + 1)-form, is the coboundary of f , the k-form.

Notice that
d
k � d

k�1(·) = 0

holds for any input of (k � 1)-manifold. In the case of d
1 � d

0(·), namely, the curl of
gradient is zero.

We also derive

Theorem 46 (Stokes Theorem).

hdw, �i = hw, @�i

Definition 47 (Cohomology). Let S be a surface topological space. Let f0 and f1 be
two k-forms. A cohomology relation connecting f0 and f1 is a (k� 1)-form ' such that:

d
k�1

' = f0 � f1

We say that f0 is cohomologous to f1 if there exists such (k � 1)-form ', denoted as
f0 ⇠ f1, and cohomology class [f0] = [f1].

14



Definition 48 (Cohomology Group Structure). We omit further details, see figure 1.6:

H
k(S,Z) =

Z
k(S)

Bk(S)
=

ker d
k

img dk�1

Theorem 49 (Poincaré Duality). Given n dimensional topological space S:

H
k(S,Z) ⇠= Hn�k(S,Z)

When n = 2 as in the case of surface topology, given path-connected oriented closed
genus g surface S, we have

H
2(S,Z) ⇠= H0(S,Z) ⇠= Z ⇠= H2(S,Z) ⇠= H

0(S,Z)

H
1(S,Z) ⇠= H1(S,Z) ⇠= Z2g

Definition 50 (Dual Cohomology Basis). suppose a homology basis of H1(S) is {�1, �2, ..., �n},
the dual cohomology basis is {w1, w2, ..., wn}, satisfying:

hwi, �ji = 1i=j

where

1A :=

(
1 if A is true

0 otherwise
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Chapter 2

Basic Discrete Surface Algebraic
Topology

The discrete version of algebraic surface topology was built on oriented 2-dimensional
simplicial complex, namely the triangular mesh, which was implemented by half-edge
data structure in computer.

2.1 Half-edge Data Structure

Definition 51 (Half-edge Data Structure). The half-edge data structure of triangular
mesh approximating an oriented surface has the following classes:

V vertex class

H half-edge class, oriented from one vertex (the source vertex) to another vertex (the
target vertex)

E edge class, each edge has two opposite half-edges, with the exception that the edge
on boundary only has one half-edge

F face class, each face has three half-edges, oriented counter-clockwisely with respect
to the normal of face

with the following pointer functions which take in the realization of classes above:

v(·) vertex pointer function v : H ! V parametrized by “source/target” that points
a half-edge to a vertex. vsour(·) points to the source vertex, and vtarg(·) points to
the target vertex

f(·) face pointer function f : H ! F that points a half-edge to a face that it belongs
to

e(·) edge pointer function e : H! E that points a half-edge to an edge that it belongs
to

h(·) the polymorphic half-edge pointer function can recognize di↵erent inputs and take
di↵erent actions:

16



half-edge h : H ! H parametrized by “next/previous” that points a half-edge to
another half-edge, where hnext(·) points to the next half-edge, and hprev(·)
points to the previous half-edge

face h : F! H points a face to the first half-edge it contains

vertex h : V! H points a vertex to the first half-edge that the vertex was targeted

edge h : E ! H ⇥ H points an edge to the pair of half-edges it contains (with
exception of boundary edge that has only one half-edge, in that case h : E!
H)

Example 52 (2-chain). As shown in figure 2.1, we have realization of classes:

V = {v1, v2, v3, v4, v5, v6} =: v1:6

H = h1:12

E = e1:9

F = f1:4

h1

h2
h3

h4

h5

h6

h7

h10

h8

h11

h9

h12

f1

f2

f3

f4

v1

e1

v2

e2

v3

v4

v5

v6

e3

e4

e5

e6

e7

e8

e9

Figure 2.1: an example of half-edge data structure of a simplicial complex ⌃ = f1 +f2 +
f3 + f4

and pointer functions :

1. v(·) is obvious to every half-edge in the picture, e.g. vsour(h1) = v2 and vtarg(h1) =
v1

2. f(·) is also obvious to every face in the picture, e.g. f(h1) = f(h6) = f(h10) = f1

3. e(·) in this picture is:

e(hn) =

(
en if n  9

en�3 otherwise
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4. h(·) in this picture, firstly

h(en) =

(
hn if en on boundary

(hn, hn+3) otherwise

secondly we denote e.g. hnext(h1) = h6 and hprev(h6) = h1 as 1 ! 6, then we
denote all h : H! H as

1! 6! 10! 1 2! 11! 3! 2 4! 12! 5! 4 8! 7! 9! 8

thirdly we set “the first half-edge” of each face and fourthly “the first half-edge”
of each target vertex in this picture (note that these are merely arbitrary choices)
as follows:

h(f1) = h1 h(f2) = h2 h(f3) = h5 h(f4) = h8

h(vn) = hn

Now we rephrase example 52 in discrete surface topology language.

2.2 Discrete Algebraic Surface Topology

Definition 53 (Simplex). Suppose k + 1 linear independent points embedded in Rn

v0, v1, ..., vk

the standard k-simplex

[v0, v1, ..., vk]

is the minimal convex set including all of them.

e.g. in figure 52, the 2-simplex (vertices written counter-clock-wisely)

f1 = [v2, v1, v6]

the 1-simplex (vertices written from source to target)

h1 = [v2, v1]

Definition 54 (Simplicial Complex). A simplicial complex ⌃ is an union of simplicies
with “vertex auto -alignment”.

Example 55 (Simplicial Complex). See figure 2.2

Definition 56 (Chain). A k-chain is a linear combination (formal sum) of all
k-simplicies in ⌃.

Definition 57 (Chain Space). The k-dimensional chain space is the linear space formed
by all k-chain by formal sum over Z, denoted as

Ck(⌃,Z)

e.g. in figure 52,

• in C2(⌃,Z), a 2-chain could be f1, f1 + f2, or even f1 + 3f2 � 4f3
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Figure 2.2: An example (left) and not-example (right) of simplicial complex

• in C1(⌃,Z), a 1-chain could be h1 + h2, or even 2h1 � 5h2 + 3h4

Definition 58 (Boundary Operator). The discrete version of boundary operator @, could
be implemented as follows: we use hat notation as we delete v̂i from [v0, ..., v̂i, ..., vk].
Then

@[v0, v1, ..., vk] =
kX

i=0

(�1)i[v0, ..., v̂i, ..., vk]

e.g. in figure 52,

• @f2 = @[v3, v2, v4] = [v3, v2] + [v2, v4]� [v3, v4] = h2 + h11 + h3

• @h1 = @[v2, v1] = v1 � v2

we would easily see that the boundary operator is linear, e.g.

@⌃ = @(f1 + f2 + f3 + f4) = @f1 + @f2 + @f3 + @f4

and @
2 = 0, e.g.

@
2
f2 = @(h2 + h11 + h3) = v2 � v3 + v4 � v2 + v3 � v4 = 0

Definition 59 (Cochain Space). By assigning a value to each k-simplex (opposite half-
edges get same value with di↵erent symbols), one can get a k-dimensional cochain space

formed by all k-cochain, which takes in a k-chain and outputs the summation of value
of k-simplicies of the k-chain.

We define discrete version:

closed 1-chain ! loop

exact 1-chain ! boundary

closed 1-cochain ! curl free field

exact 1-cochain ! gradient field
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�0.03

�0.1 0.05

�0.6

0.75

�0.07

�0.1

0.1

�0.05

0.05

0.15

�0.15

Figure 2.3: an example of 1-cochain w constructed from ⌃

Example 60 (1-cochain). see figure 2.3, we have

w(h2 + h7) = w(h2) + w(h7) = �0.1� 0.1 = �0.2

and one can see that any exact 1-chain � in ⌃, we have

w(�) = 0

so w is an exact 1-cochain.
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Recall that graph G = (V, E), by its definition, is contained in a simplicial complex
⌃.

Definition 61 (Dual Graph). The dual graph Ḡ of a plane graph G, is a graph that

• has a vertex for each face of G

• has an edge whenever two faces of G are separated from each other by an edge,
and a self-loop when the same face appears on both sides of an edge

Thus, each edge e of G has a corresponding dual edge ē in Ḡ, whose endpoints are the
dual vertices corresponding to the faces on either side of e.

Definition 62 (Spanning Tree). A spanning tree T of an undirected graph G is a
subgraph that is a tree which includes all of the vertices of G, with a minimum possible
number of edges.

2.3 Algorithms of ⇡1(⌃), ⌃̃, H1(⌃) and H
1
(⌃)

We now introduce algorithms to compute

• ⇡1(⌃), first homotopy group of ⌃ (algorithm 1)

• ⌃̃, universal covering space ⌃ (algorithm 2)

• H1(⌃), first homology group of ⌃ (algorithm 3)

• H
1(⌃), first cohomology group of ⌃ (algorithm ??)

represented by 1-chain or 1-cochain as group basis. For computation of the first
homology group H1(⌃), it has the same bases with the first homotopy group ⇡1(⌃).
However, it is not the case in higher dimensions. For higher dimensional computation
of homology group basis, please consult eigen-decomposition of combinatorial Laplace
operator using Smith norm.

Figure 2.4: a triangulation mesh on a genus 1 surface
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Algorithm 1: First Homotopy Group ⇡1(⌃)

Input: a closed triangular mesh ⌃
Output: ⇡1(⌃)

1. compute the dual mesh ⌃̄ of the input mesh ⌃

2. compute a spanning tree T̄ of ⌃̄, rooted at an arbitrary point p

3. the cut graph � of ⌃ is given by

� := {e 2 ⌃ | ē /2 T̄}

4. compute a spanning tree T of �

5. select an edge ei 2 � \ T, then ei [T gives an unique closed 1-chain �i; suppose
we get a set of distinct 1-chains

{�1, �2, ..., �k}

which is the set of generators of ⇡1(⌃)

6. cut the mesh ⌃ along � to obtain ⌃̃0, the fundamental domain of ⌃

7. set R = ;, let � = @⌃̃0, traverse �, once e
±1
i

is encountered, append �
±1
i

to R,

R R�
±1
i

8. the first homotopy group of ⌃

⇡1(⌃, p) = h�1, �2, ..., �k | R i

Algorithm 2: Universal Covering Space ⌃̃
Input: a closed triangular mesh ⌃
Output: an universal covering space ⌃̃ with desired size

1. the same as step 1 ! 6 in algorithm 1

2. set ⌃̃ = ⌃̃0, glue a copy of ⌃̃0 with ⌃̃ along �i, a homeomorphism
h : @⌃̃ � �i ⇠ �

�1
i
⇢ @⌃̃0

⌃̃ ⌃̃ [h ⌃̃0

3. trace the boundary of ⌃̃, if there are two adjacent 1-chains �j , �j+1 ⇢ @⌃̃, such
that �

�1
j

= �j+1 then glue them together

4. repeat step 2 and step 3, until ⌃̃ is large enough

22



Algorithm 3: First Homology Group H1(⌃)

Input: a closed triangular mesh ⌃
Output: H1(⌃)

1. the same as step 1 ! 5 in algorithm 1

2. H1(⌃) = {[�1], [�2], ..., [�2g]}

Algorithm 4: First Cohomology Group H
1(⌃)

Input: a closed triangular mesh ⌃
Output: H

1(⌃)

1. the same as step 1 ! 2 in algorithm 3

2. for each �i, slice ⌃ along �i to obtain a mesh ⌃i with two boundaries. We have
@⌃i = �

+
i
� �

�
i

3. set a 0-form ⌧i on ⌃i such that ⌧i(v+) = 1 for all vertices v
+ 2 �

+
i

and ⌧i(v�) = 0
for all vertices v

� 2 �
�
i

; set wi = d⌧i

4. H
1(⌃) = {[w1], [w2], ..., [w2g]}
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Chapter 3

Maps between Topological Spaces

Definition 63 (Continuous Map). A continuous map f is a continuous function between
two topological spaces M and N, denoted as,

f : M! N

Definition 64 (Simplicial Map). A simplicial map ' between simplicial complexes K

and L is a function
' : Vert(K)! Vert(L)

from the vertex set of K, to that of L such that whenever v0, v1, ..., vq span a q-simplex
of K, '(v0), '(v1), ..., '(vq) span a p-simplex (p  q) of L. Of course, repetitions among
'(v0), '(v1), ..., '(vq) are allowed.

Note that the simplicial map ' can be regarded as a function from K to L: this
function sends a simplex � of K with vertices v0, v1, ..., vq to the simplex '(�) of L

spanned by vertices '(v0), '(v1), ..., '(vq), so we also write ' as

' : K ! L

Note that the simplicial map ' also induces a continuous map

' : |K|! |L|

between |K| and |L| (the polyhedra1 of K and L), where a point inside |K| spanned by
vertex v0, v1, ..., vq is sent to a point inside |L| continuously by

'

0

@
qX

j=0

tjvj

1

A =
qX

j=0

tj'(vj) whenever 0  tj  1 for j = 0, 1, ..., q and
qX

j=0

tj = 1

As a closing remark, there are thus three equivalent ways of describing a simplicial
map:

1|K| always denotes the polyhedra of simplicial complex K.

• for 0-simplex �0, |�0| is itself
• for 1-simplex �1, |�1| is itself
• for 2-simplex �2, |�2| is the triangle it contains

• for 3-simplex �3, |�3| is the tetrahedron it contains
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1. as a function between the vertex sets of two simplicial complexes, e.g. ' : Vert(K)!
Vert(L)

2. as a function from one simplicial complex to another, e.g. ' : K ! L

3. as a continuous map between the polyhedra of two simplicial complexes, e.g. ' :
|K|! |L|

We shall describe a simplicial map using the representation that is most appropriate
in the given context.

3.1 Simplicial Approximation Theorem

One may have experience with Minecraft game or Lego toy. Any real world object can
be discretized in lattice. The mathematical theorem behind is simplicial approximation

theorem, which guarantees that a continuous manifold can be (by a slight deformation)
approximated by a simplicial complex of the simplest kind given its embedded simplicial
complex space.

Example 65 (Manifold Embedded in Simplicial Complex). See figure 3.1, The manifold
M embedded in a given simplicial complex L described by a continuous map from |K|,
the “parameter”, to |L|:

M : |K|! |L|

|K| M M ⇢ |L|

Figure 3.1: manifold M was represented by a continuous map: M : |K|! |L|

Definition 66 (Star of a Vertex). Let K be a simplicial complex and let p 2 Vert(K).
Then the star of p, the “discrete version of the neighbor of a point”, denoted by st(p),
is defined by

st(p) =
[

s
� ⇢ |K| where simplex s 2 K such that p 2 Vert(s)

Example 67 (Star of a Vertex). As shown in figure 3.2, st(p) consists of the open shaded
region, all the open simplices of which p is a neighbor.

Definition 68 (Simplicial Approximation). Let M be a manifold represented by a
continuous map M : |K| ! |L|. Its approximating candidate M� , represented by a
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p

Figure 3.2: star of p, denoted by st(p)

simplicial map M� : K ! L, is simplicial approximation to M if, for every vertex p of
K,

M(st(p)) ⇢ st(M�(p))

which means M carries neighboring simplices of p inside the union of the simplices near
M�(p). M� and M are close up to a meshing unit.

Example 69 (Simplicial Approximation). See figure 3.3, M� is an simplicial approx-
imation to M. M� (red) is the simplest approximation to M, achieved by Sd1

K, the
first-order barycentric subdivision of K. Barycentric subdivision and simplicial approx-
imation theorem will be explained right away.

K2 = Sd1
K M ⇢ |L| M� ⇢ |L|

Figure 3.3: The simplicial approximation theorem guarantees that a simplest approxi-
mation in a given embedding mesh will be achieved by su�cient iterations of barycentric
subdivision of “parameter”.

Definition 70 (Barycentric Subdivision). If s is a simplex, let b
s denote its barycenter.

If K is a simplicial complex, define Sd K, the barycentric subdivision of K, to be the
simplicial complex with

Vert(Sd K) = {b
s : s 2 K}

note that here s 2 K are simplex of all dimensions in K. Recall that if s is a 0-simplex
then trivially b

s = s; if s is a 1-simplex then b
s is the central point of two vertices; and

so on. The q times iteration of barycentric subdivision is denoted by

Sdq
K
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p2

p0 p1

b0b1

b2

b
�

Figure 3.4: first order barycentric subdivision of the simplex �

Example 71 (Barycentric Subdivision). See figure 3.4, if simplex � = [p0, p1, p2], then
Vert(Sd �) = {p0, p1, p2, b0, b1, b2, b

�}.

Definition 72 (Simplicial Approximation Theorem). Given simplicial complexes K and
L. A smooth manifold M represented by continuous map M : |K| ! |L| must have a
simplicial approximation, and could be found its simplest kind after some barycentric
subdivision of K by

M� : Sdq
K ! L where q � 1

Simplicial approximation theorem was the foundation of modern movie industry and
game industry, since it provides a theoretical guarantee that the simplest discrete digital
approximation of any smooth-shaped object exists.

Example 73 (Simplicial Approximation Theorem). See figure 3.1, one cannot construct
a simplicial approximation to M by its “parameter” K, but one can do so by K2, the
first-order barycentric subdivision of “parameter”, as shown in figure 3.3

3.2 Chern-Gauss-Bonnet Theorem

Definition 74 (Induced Maps). Algebraic topology constructs functor

C1 ! C2

between C1 = {Topological Spaces, Homeomorphisms} and C2 = {Groups, Homomorphisms}.
Therefore, a continuous map f : M! N naturally induces homomorphism. there basi-
cally two kinds of induced map:

• push-forward map, denoted by f# if on homotopy, and denoted by f⇤ if on homol-
ogy.

f# maps between fundamental groups2 :

f# : ⇡1(M)! ⇡1(N)

2
f# takes “curves” to “curves”:

f# : Cp(M) ! Cp(N)

f# takes “cycles” to “cycles”:

f# : Zp(M) ! Zp(N)

f# takes “boundaries” to “boundaries”:

f# : Bp(M) ! Bp(N)
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f⇤ maps between p
th-homology groups, where p should be clear in the context:

f⇤ : Hp(M)! Hp(N)

• pull-back map, denoted as f
⇤ if it maps between p

th-cohomology groups3, where p

should be clear in the context:

f
⇤ : H

p(N)! H
p(M)

Example 75 (Induced Maps of Surface). Suppose M and N are two closed surfaces, a
continuous map:

f : M! N

induces a push-forward map on first homology:

f⇤ : H1(M)! H1(N)

and a pull-back map on first cohomology:

f
⇤ : H

1(N)! H
1(M)

Suppose a curve � 2 C1(M) ⇢ H1(M) and a vector field ! 2 C
1(N) ⇢ H

1(M), then

![f⇤(�)] = [f⇤(!)](�)

Definition 76 (Degree of a Map). Suppose M and N are two closed surfaces, the degree

of map of a continuous map f : M! N is the algebraic number4 of pre-images f
�1(q)

for arbitrary point q 2 N, denoted by deg(f), which is independent of the choice of the
point q. A quick example see figure 3.5

Figure 3.5: a continuous map f : M !M from a sphere to itself but in 2x speed. For
every point q 2M, there are two pre-images, so deg(f) = 2

3
here we explain why push-forward and pull-back are opposite direction in a natural way.

– Points are sent forward. Given p 2 M we have f(p) 2 N

– Functions are sent back, i.e. pull back from N to M. If we have a function ! : N ! R then we get

the composition ! � f : M ! R. The pull back can be considered a functional map, which maps

from function on N to function on M

4
if Jacobian at that point q is positive then count +1, otherwise then count -1, then degree of map is

sum of total count
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Example 77 (Degree of a Map). Suppose M and N are two closed surfaces, a continuous
map:

f : M! N

induces a push-forward map on second homology:

f⇤ : H2(M)! H2(N)

since H2(M,Z) ⇠= Z ⇠= H2(N,Z), we also write its isomorphism:

f̃⇤ : Z! Z

and it must have the form
f̃⇤(z) = deg(f) · z

Definition 78 (Euler-Poincaré Characteristic). let g be the genus of a closed surface S,
then Euler characteristic, denoted as �(S), is

�(S) = 2(1� g)

the discrete version, if S triangulated in S�, is

�(S�) = |Faces|� |Edges| + |Vertices|

Definition 79 (Gaussian Curvature). At any point on a surface, we can find a normal
vector that is at right angles to the surface; planes containing the normal vector are
called normal planes. The intersection of a normal plane and the surface will form a
curve called a normal section and the curvature of this curve is the normal curvature. For
most points on most surfaces, di↵erent normal sections will have di↵erent curvatures;
the maximum and minimum values of these are called the principal curvatures, call
these 1, 2. The Gaussian curvature is the product of the two principal curvatures
K = 1 · 2, as shown in figure 3.6

Figure 3.6: Gaussian curvature is the product of principal curvature 1 and 2. The
curvature of a circle is reciprocal of radius: 1/r. So if the curvature is , the radius is
1/, as noted in the figure

29



Theorem 80 (Chern-Gauss-Bonnet Theorem). Let S be a closed surface, K(p) the

Gaussian curvature at point p on surface, and dA(p) the element area at point p on

surface, then its total Gaussian curvature

Z

S
K(p)dA(p) = 2⇡�(S)

Shiing-Shen Chern provided simple intrinsic proof of Gauss-Bonnet Theorem, which
added his name to Gauss-Bonnet. We illustrate his beautiful proof by applying degree
of Gauss map and homotopy between surfaces.

proof. consider the Gauss Map G : S⇤ ! S2 from a canonical closed surface S⇤ to unit
sphere S2. Whenever a point p on surface with normal n(p), the Gauss Map maps it to
a point G(p) on unit sphere with the same normal n(p).

� �
+

G

Figure 3.7: The canonical shape of genus g closed surface S⇤ can guarantee deg(G) = 1�g

since the count of pre-image is strictly negative whenever a hole appears.

“canonical” here means it guarantees

deg(G) = 1� g

so the total area of the image of S⇤ on unit sphere S2 is

Area(S2)⇥ deg(G) = 4⇡ deg(G) = 4⇡(1� g) = 2⇡�(S⇤)

Note that the total area of the image of S⇤ on unit sphere S2 also equals to
Z

S⇤

Area(G(p))

Area(p)
dA(p)

which equals to, since it is a Gauss Map5:
Z

S⇤

Area(G(p))

Area(p)
dA(p) =

Z

S⇤
K(p)dA(p)

thus we get, for a canonical closed surface S⇤, the identity

Z

S⇤
K(p)dA(p) = 2⇡�(S⇤)

5
for Gauss Map, when shrinking a patch around point p, its limit is Gaussian curvature:

lim
⌦p!0

Area(G(⌦p))

Area(⌦p)
= K(p)

30



Now consider the quantity

R
S⇤ K(p)dA(p)

2⇡
= �(S⇤) 2 Z

is an integer, which should not change under continuous deformation from canonical
shaped S⇤ to any closed surface S with same genus g, thus we get for any closed surface
S

Z

S
K(p)dA(p) = 2⇡�(S)

Example 81 (Chern-Gauss-Bonnet Theorem). let S be a sphere with radius R, its genus

g = 0, then �(S) = 2⇥ (1� 0) = 2, its Gaussian curvature is constant
1

R2
, according to

Chern-Gauss-Bonnet formula
Z

S

1

R2
dA(p) =

1

R2

Z

S
dA(p) =

1

R2
⇥Area(S) = 2⇡�(S) = 4⇡

indeed Area(S) = 4⇡R
2.

3.3 Fixed Point Theorem

Definition 82 (Inclusion Map). an inclusion map i from A to B, where A ⇢ B, satisfies
that for any element x 2 A we have i(x) = x, denoted as

i : A ,�! B

Theorem 83 (Brouwer’s Fixed Point Theorem). Suppose ⌦ ⇢ Rn
is a compact convex

set, f : ⌦ ! ⌦ is a continuous map, then there exists a point p 2 ⌦ such that

f(p) = p

proof. Assume f : ⌦ ! ⌦ has no fixed point, namely

8p 2 ⌦, f(p) 6= p

We can construct g : ⌦ ! @⌦ , a ray starting from f(p) through p and intersect @⌦

at g(p). Because our assumption f(p) 6= p and ⌦ is convex, g is well-defined. Note that
if point p 2 @⌦ then g(p) = p, as shown in figure 3.8. We construct an inclusion map
i : @⌦ ,�! ⌦, which maps a point p 2 @⌦ to itself. Then we compose it with g,

@⌦
i

,�! ⌦
g�! @⌦

we get an identity map:
(g � i) : @⌦ ! @⌦

which induces a push-forward map on (n� 1)th homology:

(g � i)⇤ : Hn�1(@⌦,Z)! Hn�1(@⌦,Z)
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f(p)

p

g(p)

f(p)

p = g(p)

Figure 3.8: diagram of g : ⌦ ! @⌦ (left) and (g � i) : @⌦ ! @⌦ (right)

since it is identity map,
(g � i)⇤ : z 7! z

g : ⌦ ! @⌦ induces a push-forward map on (n� 1)th homology:

g⇤ : Hn�1(⌦,Z)! Hn�1(@⌦,Z)

however, since ⌦ is compact convex set

Hn�1(⌦,Z) = 0, g⇤ = 0

so
(g � i)⇤ = g⇤ � i⇤ = 0

contradiction! f : ⌦ ! ⌦ has fixed point.

In 1910, Luitzen Egbertus Jan Brouwer proved his fixed point theorem, which ensured
the existence of fixed point of a continuous self-map of convex compact space. Often, it
can be stated as follow:

Example 84 (“Swirling Co↵ee” Theorem). Use a stick (volume can be ignored) to swirl
a cup of co↵ee without making any bubble. In the end, there is a molecule with final
position the same as initial position in your co↵ee.

Figure 3.9: “swirling co↵ee” theorem: at least one molecule, “doesn’t move” before and
after co↵ee swirling

In 1926, Solomon Lefschetz gave a formula that relates the number of fixed points of
a map to the induced push-forward maps on homology.
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Definition 85 (Index of Fixed Point). Suppose M is an n-dimensional topological
space, p is a fixed point of self-map f : M !M. Choose a neighborhood U such that
p 2 U ⇢ M, consider the boundary of U, which is a (n � 1)-dimensional @U. Similar
to the concept “degree of a map” (see example 77), the induced push-forward map on
(n� 1)th homology:

f⇤ : Hn�1(@U,Z)! Hn�1(@U,Z)

is f⇤ : Z ! Z and must have the form f⇤ : z 7! �z, where � is an integer called the
algebraic index of fixed point p of map f , denoted as

Ind(f, p) = �

Definition 86 (Trace of Self-map). Let A be a matrix representing a self-map f : M!
M under any basis, then the trace of f , denoted as

Tr(f)

is Tr(A), the trace of A, which is independent of choice of basis.

Definition 87 (Lefschetz-Hopf Fixed Point Formula). Given compact topological space
M. The sum of indices of all fixed points of a self-map f : M!M equals to the alter-
nating sum of trace of push-forward map on k

th homology f⇤k : Hk(M,Z)! Hk(M,Z)
induced by the self-map f

X

p2Fix(f)

Ind(f, p) =
X

k

(�1)kTr(f⇤k) =: ⇤(f)

where ⇤(f) is called Lefschetz number, and Fix(f) denotes the set of all fixed points of
f

Example 88 (Lefschetz-Hopf Fixed Point Formula). consider a simple self-map f :
[0, 1]! [0, 1]. we have

⇤(f) = Tr(f⇤0 : Z! Z)| {z }
1

�Tr(f⇤1 : 0! 0)| {z }
0

= 1 =
X

p2Fix(f)

Ind(f, p)

as shown in figure 3.10

Theorem 89 (Lefschetz’s Fixed Point Theorem). Given a continuous self-map of a

compact topological space f : M!M, if its Lefschetz number ⇤(f) 6= 0, then there is a

point p 2M such that

f(p) = p

Proof (Advanced). Notation update:

• fk: the induced push-forward map on k-dimensional space

• fk | Ck: the induced map on k-chain group

• fk | Hk: the induced map on k-homology

• �: direct sum between groups, e.g. A�B = {(a + b) | a 2 A, b 2 B}
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p+
p+

p�

p+

p�

p+

Figure 3.10: a self-map f1 : [0, 1] ! const (left) versus its homotopic self-map f2 with
same Lefshcetz number ⇤(f1) = ⇤(f2) = 1

Ck

Zk

Ck

Zk

fk

@k @
�1
k

Bk�1

fk�1
Bk�1

@k

Figure 3.11: commutative diagram of induced map and boundary operator

According to simplicial approximation theorem, there must be approximated maps
up to any precision. So we triangulate M first, and assume its induced map f can be
both embedded in chain space and smooth space, as shown in the commutative diagram
as figure 3.11:

we have

(fk�1 | Bk�1) = @k � (fk | Ck

Zk

) � @
�1
k

and thus

Tr(fk�1 | Bk�1) = Tr([@k][fk | Ck

Zk

][@�1
k

])

= Tr([fk | Ck

Zk

][@�1
k

][@k])

= Tr(fk | Ck

Zk

)

according to property of trace.
Let Ck be k-chain group, Zk closed chain group, Bk exact chain group, Hk homology

group. We have

Ck
⇠=

Ck

Zk

� Zk and Zk
⇠= Bk �Hk
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thus

Tr(fk | Ck) = Tr(fk | Ck

Zk

� Zk)

= Tr(fk | Ck

Zk

) + Tr(fk | Zk)

= Tr(fk�1 | Bk�1) + Tr(fk | Bk) + Tr(fk | Hk)

thus

X

k

(�1)kTr(fk | Ck) =
X

k

(�1)k[

cancel out in sequencez }| {
Tr(fk�1 | Bk�1) + Tr(fk | Bk) +Tr(fk | Hk)] (3.1)

=
X

k

(�1)kTr(fk | Hk) (3.2)

= ⇤(f) (3.3)

according to Lefschetz-Hopf fixed point formula. Whenever ⇤(f) 6= 0, there is an entry
in a matrix such that Tr(fk | Ck) 6= 0, which means there is simplex � 2 Ck such that
fk(�) ⇢ �, for any point in |�|, the continuous map fk : |�|! |�| must have a Brouwer’s
fixed point such that fk(p) = p, which means

f(p) = p

Example 90 (Lefschetz Number, Betti Number and Euler-Poincaré Characteristic).
Consider an identity map of a closed surface

id : S! S

the identity map is, of course, a self-map. According to equations 3.1, 3.2 and 3.3, we
have

⇤(id) =
X

k

(�1)kTr(idk | Ck) = Tr(id2 | C2)| {z }
|Faces|

�Tr(id1 | C1)| {z }
|Edges|

+ Tr(id0 | C0)| {z }
|Vertices|

=
X

k

(�1)kTr(idk | Hk) = Tr(id2 | H2)| {z }
b2

�Tr(id1 | H1)| {z }
b1

+ Tr(id0 | H0)| {z }
b0

= �(S)

Here we show that for an identity map, the connection between its Lefschetz number
and Euler-Poincaré characteristic, and where Euler (number of triangulation elements)
and Poincaré (Betti number) coincide.

Geometrically, Betti number of surface can be understood as:

• b0 is the number of connected components

• b1 is the number of one-dimensional or “circular” holes

• b2 is the number of two-dimensional “voids” or “cavities”

e.g. for a tours, b0 = 1, b1 = 2 and b2 = 1
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3.4 Poincaré-Hopf Theorem

Lefschetz-Hopf fixed point formula directly leads to Poincaré-Hopf index theorem, which
relates the number of zeros of a vector field to the topological invariant of space where
the vector field is embedded.

Definition 91 (Isolated Zero Point). Given a smooth vector field on a surface S

vS : S! TS

assigning each point p 2 S a tangent vector vS(p) 2 TS, then p 2 S is called a zero point

if
vS(p) = 0

If there is a neighborhood U(p) such that p is the unique zero in U(p), then p is an
isolated zero point.

We use
Zero(vS)

to denote the set of all zero points of a vector field vS

Definition 92 (Index of Zero Point). Given a zero p 2 Zero(vS) of a vector field vS,
choose a small disk B(p, ") and define a map ' from @B to unit circle S1:

' : @B ! S1

where a point q 2 @B maps to '(q) 2 S1 with the same vector direction
vS(q)

|vS(q)| , which

induces a homomorphism:
'# : ⇡1(@B)! ⇡1(S1)

and must have the form
'#(z) = kz

where k is called the index of zero point, denoted as

k =: Ind(vS, p)

comment: very similar to “degree of map” and “index of fixed point”

Example 93 (Index of Zero Point). see figure 3.12, if the mapping is with same ori-
entation then we count positive, otherwise count negative. Index of zero point of sink
field, source field and saddle field is +1, +1 and �1, respectively

Definition 94 (Poincaré-Hopf Index Theorem). Assume S is a compact, oriented smooth
surface, vS is a smooth tangent vector field with isolated zeros. If S has boundaries6,
then vS point along the exterior normal direction7, then we have

X

p2Zero(vS)

Ind(vS, p) = �(S)

where �(S) is the Euler-Poincaré characteristic.
6
for a surface S with genus g and number of boundaries b, the Euler-Poincaré characteristic is

�(S) = 2(1� g)� b

7
for a point p 2 @S, vS(p) · n(p) > 0
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vS

@B

S1

p

Ind(vS, p) = +1

vS

Ind(vS, p) = +1

p

vS

Ind(vS, p) = �1

p

'

@B

S1

'

@B

S1

'

Figure 3.12: index of sink (left), source (middle) and saddle (right) point is +1, +1,�1,
respectively

Proof. we construct a continuous self-map f" : S! S in following way:

f"(p) = p + "vS(p)

we know the identity map (where " = 0) is homotopic to f":

f0 ⇠ f"

thus we have (see example 90)

⇤(f") = ⇤(id) = �(S)

notice that
f"(p) = p if and only if vS = 0

thus ⇤(f"), the summation of indices of fixed points of f", equals to the summation of
indices of zero points of vS, equals to Euler-Poincaré characteristic

X

p2Fix(f")

Ind(f", p) =
X

p2Zero(vS)

Ind(vS, p) = �(S)

Example 95 (Poincaré-Hopf Index Theorem). For a torus with �(T2) = 0, one can
construct a tangent vector field without zero point. For a sphere with �(S2) = 2 and a
bi-torus �(T2�T2) = �2, however, one cannot construct a tangent vector field without
zero point. As shown in figure 3.13

Example 96 (“Parietal Whorl” theorem). We now show that parietal whorl in your
head is guaranteed by Poincaré-Hopf index theorem.
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Figure 3.13: tangent vector field of torus, sphere and bi-torus

• The hair region of human scalp can be considered as a smooth, compact, oriented
surface with a boundary, so its Euler-Poincaré characteristic is 1

• The hair, with its direction and length, can be considered as a tangent vector field

• The parietal whorl, can be considered the zero point of the vector field

Given the fact that, the hairs on boundary always point along the exterior normal
direction, as shown in figure 3.14 for currently-unknown developmental biological reason,
Poincaré-Hopf index theorem guarantees that everyone has at least one parietal whorl

Figure 3.14: A baby with possibly two source points and one saddle point on his head
at the same time (left). Hairs on boundary of hair region on your scalp always point
outward (right)
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Chapter 4

Topological Obstruction

Poincaré-Hopf index theorem tells us that one cannot construct a smooth vector field
over a sphere without zero point. Today we see this conclusion from another view.

4.1 Tangent Vector in Coordinate Chart

Historically, geometric techniques were developed mostly for Euclidean space. To study
curved space, e.g. a manifold, we can construct local maps of open covers between
manifold and Euclidean space.

Definition 97 (Smooth Manifold with Charts and Atlas). A manifold is a topological
space M covered by a set of open sets {U↵}. A homeomorphism '↵ : U↵ ! Rn maps
U↵ to the Euclidean space Rn. (U↵, '↵) is called a coordinate chart of M. The set of
all charts {(U↵, '↵)} form the atlas of M. Suppose U↵ \ U� 6= ;, then

'↵� = '� � '
�1
↵ : '↵(U↵ \ U�)! '�(U↵ \ U�)

is a transition map. If all transition maps are smooth, namely

'↵� 2 C
1(Rn)

then the manifold is a di↵erentiable (or di↵erential) manifold or a smooth manifold, as
shown in figure 4.1

Example 98 (Stereo-graphic Projection). A manifold can hardly be covered by only
one coordinate chart, thus it usually needs to be covered by multiple charts. A basic
example is so-called stereo-graphic projection.

As shown in figure 4.2, north pole ↵ = (0, 0, 1), south pole � = (0, 0,�1), let p =
(x1, x2, x3), '↵(p) = (x, y), '↵(q) = (u, v)

'↵ : (x1, x2, x3) 7! (
x1

1� x3
,

x2

1� x3
)

'
�1
↵ : (x, y) 7! (

2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
�1 + x

2 + y
2

1 + x2 + y2
)

'� : (x1, x2, x3) 7! (
x1

1 + x3
,
�x2

1 + x3
)

'
�1
�

: (u, v) 7! (
2u

1 + u2 + v2
,

�2v

1 + u2 + v2
,
1� u

2 � v
2

1 + u2 + v2
)
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'↵

'�

U↵

U�

'↵(U↵)

'�(U�)

'↵(N)

'
�1
↵

N = U↵ \ U�

'�(N)

'↵�

Figure 4.1: definition of smooth manifold was achieved by mapping it to Euclidean space
patch by patch smoothly.

Note that indeed '↵� = '� �'�1
↵ 2 C

1, the unit sphere is a smooth manifold. Notice
that '↵ cannot cover ↵ and '� cannot cover �. You need both to cover the whole sphere.

As shown in figure 4.3, let p 2 S2. Any vector dr 2 TpS2 through '↵ can be
represented by dr = @xdx + @ydy, where

@x =
@r

@x
=

@'
�1
↵ (x, y)

@x
=

2

(1 + x2 + y2)2

2

4
1� x

2 + y
2

�2xy

2x

3

5

@y =
@r

@y
=

@'
�1
↵ (x, y)

@y
=

2

(1 + x2 + y2)2

2

4
�2xy

1 + x
2 � y

2

2y

3

5

and the inner product

h@x, @xi = h@y, @yi =
4

(1 + x2 + y2)2

h@x, @yi = 0

so interestingly the bases of TpS2 derived from partial derivative are orthogonal with
equal length.

Definition 99 (Riemannian Metric and Riemannian Manifold). Let M be a smooth
manifold, a Riemannian metric g on M is a smooth family of inner products on the
tangent spaces of M. Namely, g associates to each point p 2 M a positive definite
symmetric bi-linear form on TpM:

gp : TpM⇥ TpM! R

along with which comes a norm

| · |gp : TpM! R defined by |v|gp =
q

gp(v,v)

The smooth manifold M endowed with this metric g is a Riemannian manifold, denoted
by (M, g). Every smooth manifold has a Riemannian metric.
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p 2 S2

'↵(p) 2 R2
q 2 S2

↵

�

'�(q) 2 R2

(0, 0, 0)
(0, 0)

Figure 4.2: A unit sphere S2 2 R3 cannot be covered by only one chart, but can be
covered by two charts, so-called stereo-graphic projection. The center of the sphere is
(0, 0, 0). We take its xy-plane as the image plane, containing the equator of sphere. The
north pole ↵ projects a point p 2 S2 to the plane '↵(p) 2 R2, and the south pole �

projects a point q 2 S2 to the plane '�(q) 2 R2.

(0, 0, 0)

TpS2

dr

dx

dy

r
@x

@y

p

Figure 4.3: Let p 2 S2. Let vector r = '
�1
↵ (x, y) parametrized by (x, y) 2 R2, then

any vector dr on TpS2, the tangent plane at point p on S2, can be represented by
dr = @xdx + @ydy.

Continue example 98. All the coordinates are in R3. For any tangent vector dr =
@xdx + @ydy 2 TpS2 at point p, we need (x, y) to parameterize the position of point
p 2 S2 and (dx, dy) to parameterize the direction and length of tangent vector dr. We
can use (x, y, dx, dy) to parameterize tangent vector.

We now introduce g
can
p , the canonical Euclidean metric, as a case of Riemannian

metric1 to measure the “distance” of two tangent vector at point p

g
can
p : TpS2⇥TpS2 ! R is defined by (@xdx1+@ydy1, @xdx2+@ydy2) 7! dx1dx2+dy1dy2

if we are only interested in unit tangent vector (“unit” in the sense of g
can
p ) and denote

1
Let x

1
, ..., x

n
denote the standard coordinates on Rn

. Then define g
can
p : TpRn ⇥ TpRn ! R by

 
X

i

ai
@

@xi
,

X

j

bj
@

@xj

!
7!
X

i

aibi
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UTpS2 as unit tangent space, then we only need

|dr|gcanp
=

q
gp(dr, dr) =

p
(dx)2 + (dy)2 = 1

then we can re-parameterize (dx, dy) as (cos ⌧, sin ⌧), reducing four parameters to three:

(x, y, ⌧)

if we are further only interested in unit tangent vector on equator of unit sphere, we can
re-parameterize (x, y) as (cos ✓, sin ✓), reducing three parameters to two:

(✓, ⌧)

4.2 Shape of Smooth Non-zero Tangent Vector Field

We now consider a Riemann surface (M, g) with non-zero unit tangent vector everywhere
(“unit” is in the sense of g). All the possible unit tangent vector fields, which of course
is non-zero, form a unit tangent bundle, denoted by UTM:

UTM :=
[

p2M
{p}⇥UTpM =

[

p2M
{(p, dr) | dr 2 TpM, |dr|g = 1} = {(p, dr) | p 2M, dr 2 TpM, |dr|g = 1}

The unit tangent bundle of a surface is a 3-dimensional manifold. Then we consider
a Riemann surface of simplest kind: a unit sphere with canonical Euclidean metric
(S2, gcanp ):

UTS2 = {(p, dr) | p 2 S2, dr 2 TpS2, |dr|gcanp
= 1}

Poincaré-Hopf theorem tells us that it is impossible to construct a smooth vS2 2 UTS2.
We demonstrate such impossibility by topological obstruction.

↵

�

Figure 4.4: The topological space of unit tangent bundle of unit hemisphere is S1 ⇥D2,
a solid torus. The sectioning disk in solid torus (deep yellow) corresponds to the image
plane of '� , for example

We know that coordinate chart '↵ cannot cover point ↵ and coordinate chart '↵

cannot cover point �. So we use '↵ for lower hemisphere and '� for upper hemisphere
(figure 4.4), and glue them together through equator. We will show that to construct
a smooth vD2 2 UTD2, the unit tangent vector field over unit hemisphere2, is okay.

2
we use D2

to denote a unit disk, which is homotopic to unit hemisphere, so we also use D2
to denote

unit hemisphere
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But when we glue them together with constraint of smooth transition from '↵ to '�

on equator, two hemispheres cannot allow smooth vector fields over them at the
same time.

Firstly, we see that the shape of UTD2 is a solid torus

UTD2 ⇠ S1 ⇥ D2

as shown in figure 4.4. Because UTpD2, the set of all possible directions of unit tangent
vector at a point on unit hemisphere, corresponds to a fiber that goes through a point
on sectioning disk in solid torus (e.g. the red and blue curves in figure 4.4)

UTpD2 ⇠ S1

If we cut the torus (to remove its genus), then the sectioning surface represents a par-
ticular vD2 . The sectioning surface, through which every fiber goes only once, is called
global section. The smoothness of vD2 is guaranteed by the smoothness of that global
section. All the possible smooth vD2 corresponds to all the possible global sections that
can be smoothly deformed from the sectioning disk in solid torus

vD2 ⇠ D2

Secondly, notice that UT (@D2), the unit tangent bundle of unit hemisphere on equa-
tor (the boundary of hemisphere) corresponds to a torus, the surface of that solid torus
(figure 4.4)

UT (@D2) = UTS1 = @(S1 ⇥ D2) = S1 ⇥ (@D2) = S1 ⇥ S1 = T2

thus gluing two smooth vD2 on equator smoothly, let’s say vD2
L

(“L” for lower hemi-

sphere) and vD2
U

(“U” for upper hemisphere), is very much of gluing two solid tori with

homeomorphism of two tori such that two global sections, let’s say D2
L

and D2
U
, forming

a larger global section of UT (S2)

vD2
L

[

UT (@D2
L)⇠UT (@D2

U )

vD2
U
⇠ D2

L

[

T2
L⇠T2

U

D2
U

The topological obstruction means that one cannot find a global section of UT (S2).
Or in other words, with constraint of T2

L
⇠ T2

U
, by setting a global section D2

L
of lower

solid torus freely, one cannot find a global section of upper solid torus, as we show later.

4.3 Topological Obstruction

The homeomorphism of two tori was guaranteed by smooth transition of charts on equa-
tor from '↵ to '� , namely, from (x, y, dx, dy) to (u, v, du, dv). We check how di↵erent
'� from '↵, continue example 98

@u =
@r

@u
=

@'
�1
�

(u, v)

@u
=

2

(1 + u2 + v2)2

2

4
1� u

2 + v
2

2uv

�2u

3

5

@v =
@r

@v
=

@'
�1
�

(u, v)

@v
=

2

(1 + u2 + v2)2

2

4
�2uv

�1� u
2 + v

2

�2v

3

5
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h@u, @ui = h@v, @vi =
4

(1 + u2 + v2)2

h@u, @vi = 0

smooth transition from (dx, dy) to (du, dv) is guaranteed by di↵erentiable Jacobian
ux uy

vx vy

�
:


du

dv

�
=


ux uy

vx vy

� 
dx

dy

�

To compute ux =
@u

@x
, uy =

@u

@y
, vx =

@v

@x
and vy =

@v

@y
, the most convenient way is

by complex variable. If we parameterize (x, y) by complex number z = x + iy and (u, v)
by w = u = iv, notice that

1

z
=

1

x + iy
=

x� iy

x2 + y2
=

✓
x1

1� x3

◆
� i

✓
x2

1� x3

◆

✓
x1

1� x3

◆2

+

✓
x2

1� x3

◆2 =
x1(1� x3)� ix2(1� x3)

(x2
1 + x

2
2 + x

2
3)| {z }

1

�x
2
3

=
x1 � ix2

1 + x3
= u+iv = w

with
1

z
= w, we have dw = � 1

z2
dz, we write

du+idv = � 1

z2
(dx+idy) = � 1

(x + iy)2
(dx+idy) =

1

(x2 + y2)2


dx(y2 � x

2)� dy(2xy)  -

+i[dy(y2 � x
2) + dx(2xy)]

�

then by technique of complex variable:


ux uy

vx vy

�
=

1

(x2 + y2)2


y
2 � x

2 �2xy

2xy y
2 � x

2

�

is indeed di↵erentiable near by x
2 + y

2 = 1, the equator.
Moreover, the transition of charts ' : (z, dz) 7! (w, dw) is

' : (z, dz) 7! (
1

z
,� 1

z2
dz)

On equator, if parametrized by (✓, ⌧), as z = e
i✓ and dz = e

i⌧ , we have

' : (✓, ⌧) 7! (�✓, ⇡ � 2✓ + ⌧)

We use canonical representation of ⇡1(T2
L
) and ⇡1(T2

U
):

⇡1(T
2
L) = haL, bL|[aL, bL]i

⇡1(T
2
U ) = haU , bU |[aU , bU ]i

then ' induces a push-forward map on homotopy group3:

'# : ⇡1(T
2
L)! ⇡1(T

2
U )

by
aL 7! aU

bL 7! a
�2
U

b
�1
U

As shown in figure 4.5, we finish construction of a topological obstruction to show
that one cannot construct a smooth vector field over a sphere without zero point.

3
check by corner points: e.g. A = (0, 0) 7! '(A) = (0,⇡), B = (0, 2⇡) 7! '(B) = (0, 3⇡), C =

(2⇡, 2⇡) 7! '(C) = (�2⇡,�⇡), D = (2⇡, 0) 7! '(D) = (�2⇡,�3⇡)
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aL aU

bL
a
�2
U

b
�1
U

'#

'#

Figure 4.5: With constraint T2
L
⇠ T2

U
, by setting the global section D2

L
freely in lower

solid torus, its boundary @D2
L

= bL maps to a
�2
U

b
�1
U

. While bL can shrink to a point,
a
�2
U

b
�1
U

cannot, thus one cannot find a global section in upper solid torus with a
�2
U

b
�1
U

as its boundary, which leads to a topological obstruction

4.4 Shape of Unit Tangent Bundle of Unit Sphere

We can derive the fundamental group of UTS2 using Van Kampen theorem.

Theorem 100 (Van Kampen (-Seifert) Theorem). Topological space M is decomposed

into the union of U and V, the intersection of U and V is W,

M = U [V

W = U \V

where U, V and W are path connected.

i : W ,! U

j : W ,! V

are the inclusion maps. Pick a base point p 2W, the fundamental groups

⇡1(U, p) = hu1, ..., uk|↵1, ..., ↵li

⇡1(V, p) = hv1, ..., vm|�1, ..., �ni

⇡1(W, p) = hw1, ..., wp|�1, ..., �qi

then ⇡1(M, p) is given by

⇡1(M, p) = hu1, ..., uk, v1, ..., vm|↵1, ..., ↵l, �1, ..., �n, i(w1)j(w1)
�1

, ..., i(wp)j(wp)
�1i

One can use Van Kampen’s theorem to compute fundamental groups for topological
spaces that can be decomposed into simpler spaces.

Example 101 (Fundamental Group of Unit Tangent Bundle of Unit Sphere). We glue
UTD2

L
and UTD2

U
with homomorphism:

'#(aL) = aU

'#(bL) = a
�2
U

b
�1
U
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thus the set up:

UTS2 = UTD2
L

[

T2
L⇠T2

U

UTD2
U

T2 = UTD2
L

\
UTD2

U

where UTD2
L
, UTD2

U
and T2 are path connected.

i : T2
,! UTD2

L

j : T2
,! UTD2

U

are the inclusion maps. Pick a base point p 2 T2, the fundamental groups

⇡1(UTD2
L, p) = haLi ⇡1(T

2
L, p) = haL, bL|[aL, bL]i

⇡1(UTD2
U , p) = haU i ⇡1(T

2
U , p) = haU , bU |[aU , bU ]i

⇡1(T
2
, p) = ha, b|[a, b]i

the inclusion maps
i(a) = aL, j(a) = a

�1
U

i(b) = bL = ;, j(b) = (a�2
U

b
�1
U

)�1

then ⇡1(UTS2, p) is given by

⇡1(UTS2, p) = haL, aU |aLaU , a
�2
U

b
�1
U
i ⇠= Z2

4.5 Obstruction Class

The information of topological obstruction can be encoded in a 2-form ⌦ of smooth
surface M. The 2-form ⌦ is computed by random generated smooth vector field over
M. Surprisingly, all ⌦ generated in this way are cohomological to each other, thus
they form an equivalence class, which we call it obstruction class. We denote [⌦] as
obstruction class of H

2(M,R).

Definition 102 (Obstruction Class). Let M be a smooth manifold. According to sim-
plicial approximation theorem, there exists M�, the triangulation of M, which is refined
enough up to any precision. Given M�, we proceed without loss of generality. The unit
tangent bundle of every 2-simplex [vi, vj , vk], is direct product of fiber and the 2-simplex:

UT [vi, vj , vk] = S1 ⇥ [vi, vj , vk]

then we generate random tangent vector for each vertex, which means we generate three
random points on the torus UT (@[vi, vj , vk]), the surface (or boundary) of solid torus
UT [vi, vj , vk]. We see if the loop � 2 UT (@[vi, vj , vk]) that goes through those three
points can shrink to a point

Since ⇡1(UT [vi, vj , vk]) ⇠= Z, should � 2 ⇡1(UT [vi, vj , vk]) give a number, which we
assign it to the 2-form ⌦([vi, vj , vk]), either zero if � can shrink to a point, or non-zero
if a local topological obstruction occurs, as shown in figure 4.6. In the end, we will have
a 2-form ⌦ which represents the obstruction class

[⌦] 2 H
2(M,R)
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Figure 4.6: illustration of local topological obstruction
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